domingo, 12 de octubre de 2014

Simulador de Redes de Computadores

Simulador de redes de Computadores


Es un programa que permite al usuario desarrollar las destrezas y habilidades para la implementación y configuración de redes, este programa lo podemos encontrar en la pag del colegio en el link descargas.


Dispositivos de interconexión en el simulador de computador:

Routers


Un router es un enrutador o encaminador que nos sirve para interconectar redes de ordenadores.


Switches


Son los encargados de la interconexión de equipos dentro de una misma red, o lo que es lo mismo, son los dispositivos que, junto al cableado, constituyen las redes de área local o LAN.

End Devices


Connections


Diseñe una red que contenga un servidor cuatro terminales, una impresora y que se conecte mediante el switch.


Deber

Diseñar la red de un cyber con todos los elementos existentes y sus respectivos nombres.

domingo, 5 de octubre de 2014

Capas de Red del modelo OSI

CAPAS DE RED DEL MODELO OSI

El modelo de interconexión de sistemas abiertos (OSI) tiene siete capas. Este artículo las describe y explica sus funciones, empezando por la más baja en la jerarquía (la física) y siguiendo hacia la más alta (la aplicación). Las capas se apilan de esta forma:
  • Aplicación
  • Presentación
  • Sesión
  • Transporte
  • Red
  • Vínculo de datos
  • Física

CAPA FÍSICA

La capa física, la más baja del modelo OSI, se encarga de la transmisión y recepción de una secuencia no estructurada de bits sin procesar a través de un medio físico. Describe las interfaces eléctrica/óptica, mecánica y funcional al medio físico, y lleva las señales hacia el resto de capas superiores. Proporciona:
  • Codificación de datos: modifica el modelo de señal digital sencillo (1 y 0) que utiliza el equipo para acomodar mejor las características del medio físico y para ayudar a la sincronización entre bits y trama. Determina:
    • Qué estado de la señal representa un binario 1
    • Como sabe la estación receptora cuándo empieza un "momento bit"
    • Cómo delimita la estación receptora una trama
  • Anexo al medio físico, con capacidad para varias posibilidades en el medio:
    • ¿Se utilizará un transceptor externo (MAU) para conectar con el medio?
    • ¿Cuántas patillas tienen los conectores y para qué se utiliza cada una de ellas?
  • Técnica de la transmisión: determina si se van a transmitir los bits codificados por señalización de banda base (digital) o de banda ancha (analógica).
  • Transmisión de medio físico: transmite bits como señales eléctricas u ópticas adecuadas para el medio físico y determina:
    • Qué opciones de medios físicos pueden utilizarse
    • Cuántos voltios/db se deben utilizar para representar un estado de señal en particular mediante un medio físico determinado

CAPA DE VÍNCULO DE DATOS

La capa de vínculo de datos ofrece una transferencia sin errores de tramas de datos desde un nodo a otro a través de la capa física, permitiendo a las capas por encima asumir virtualmente la transmisión sin errores a través del vínculo. Para ello, la capa de vínculo de datos proporciona: 

  • Establecimiento y finalización de vínculos: establece y finaliza el vínculo lógico entre dos nodos.
  • Control del tráfico de tramas: indica al nodo de transmisión que "dé marcha atrás" cuando no haya ningún búfer de trama disponible.
  • Secuenciación de tramas: transmite y recibe tramas secuencialmente.
  • Confirmación de trama: proporciona/espera confirmaciones de trama. Detecta errores y se recupera de ellos cuando se producen en la capa física mediante la retransmisión de tramas no confirmadas y el control de la recepción de tramas duplicadas.
  • Delimitación de trama: crea y reconoce los límites de la trama.
  • Comprobación de errores de trama: comprueba la integridad de las tramas recibidas.
  • Administración de acceso al medio: determina si el nodo "tiene derecho" a utilizar el medio físico.

CAPA DE RED

La capa de red controla el funcionamiento de la subred, decidiendo qué ruta de acceso física deberían tomar los datos en función de las condiciones de la red, la prioridad de servicio y otros factores. Proporciona: 

  • Enrutamiento: enruta tramas entre redes.
  • Control de tráfico de subred: los enrutadores (sistemas intermedios de capa de red) pueden indicar a una estación emisora que "reduzca" su transmisión de tramas cuando el búfer del enrutador se llene.
  • Fragmentación de trama: si determina que el tamaño de la unidad de transmisión máxima (MTU) que sigue en el enrutador es inferior al tamaño de la trama, un enrutador puede fragmentar una trama para la transmisión y volver a ensamblarla en la estación de destino.
  • Asignación de direcciones lógico-físicas: traduce direcciones lógicas, o nombres, en direcciones físicas.
  • Cuentas de uso de subred: dispone de funciones de contabilidad para realizar un seguimiento de las tramas reenviadas por sistemas intermedios de subred con el fin de producir información de facturación.

Subred de comunicaciones

El software de capa de red debe generar encabezados para que el software de capa de red que reside en los sistemas intermedios de subred pueda reconocerlos y utilizarlos para enrutar datos a la dirección de destino. 

Esta capa libera a las capas superiores de la necesidad de tener conocimientos sobre la transmisión de datos y las tecnologías de conmutación intermedias que se utilizan para conectar los sistemas de conmutación. Establece, mantiene y finaliza las conexiones entre las instalaciones de comunicación que intervienen (uno o varios sistemas intermedios en la subred de comunicación). 

En la capa de red y las capas inferiores, existen protocolos entre pares entre un nodo y su vecino inmediato, pero es posible que el vecino sea un nodo a través del cual se enrutan datos, no la estación de destino. Las estaciones de origen y de destino pueden estar separadas por muchos sistemas intermedios.

CAPA DE TRANSPORTE

La capa de transporte garantiza que los mensajes se entregan sin errores, en secuencia y sin pérdidas o duplicaciones. Libera a los protocolos de capas superiores de cualquier cuestión relacionada con la transferencia de datos entre ellos y sus pares. 

El tamaño y la complejidad de un protocolo de transporte depende del tipo de servicio que pueda obtener de la capa de transporte. Para tener una capa de transporte confiable con una capacidad de circuito virtual, se requiere una mínima capa de transporte. Si la capa de red no es confiable o solo admite datagramas, el protocolo de transporte debería incluir detección y recuperación de errores extensivos. 

La capa de transporte proporciona:

  • Segmentación de mensajes: acepta un mensaje de la capa (de sesión) que tiene por encima, lo divide en unidades más pequeñas (si no es aún lo suficientemente pequeño) y transmite las unidades más pequeñas a la capa de red. La capa de transporte en la estación de destino vuelve a ensamblar el mensaje.
  • Confirmación de mensaje: proporciona una entrega de mensajes confiable de extremo a extremo con confirmaciones.
  • Control del tráfico de mensajes: indica a la estación de transmisión que "dé marcha atrás" cuando no haya ningún búfer de mensaje disponible.
  • Multiplexación de sesión: multiplexa varias secuencias de mensajes, o sesiones, en un vínculo lógico y realiza un seguimiento de qué mensajes pertenecen a qué sesiones (consulte la capa de sesiones).
Normalmente, la capa de transporte puede aceptar mensajes relativamente grandes, pero existen estrictas limitaciones de tamaño para los mensajes impuestas por la capa de red (o inferior). Como consecuencia, la capa de transporte debe dividir los mensajes en unidades más pequeñas, o tramas, anteponiendo un encabezado a cada una de ellas. 

Así pues, la información del encabezado de la capa de transporte debe incluir información de control, como marcadores de inicio y fin de mensajes, para permitir a la capa de transporte del otro extremo reconocer los límites del mensaje. Además, si las capas inferiores no mantienen la secuencia, el encabezado de transporte debe contener información de secuencias para permitir a la capa de transporte en el extremo receptor recolocar las piezas en el orden correcto antes de enviar el mensaje recibido a la capa superior.

Capas de un extremo a otro

A diferencia de las capas inferiores de "subred" cuyo protocolo se encuentra entre nodos inmediatamente adyacentes, la capa de transporte y las capas superiores son verdaderas capas de "origen a destino" o de un extremo a otro, y no les atañen los detalles de la instalación de comunicaciones subyacente. El software de capa de transporte (y el software superior) en la estación de origen lleva una conversación con software similar en la estación de destino utilizando encabezados de mensajes y mensajes de control.

CAPA DE SESIÓN

La capa de sesión permite el establecimiento de sesiones entre procesos que se ejecutan en diferentes estaciones. Proporciona: 

  • Establecimiento, mantenimiento y finalización de sesiones: permite que dos procesos de aplicación en diferentes equipos establezcan, utilicen y finalicen una conexión, que se denomina sesión.
  • Soporte de sesión: realiza las funciones que permiten a estos procesos comunicarse a través de una red, ejecutando la seguridad, el reconocimiento de nombres, el registro, etc.

CAPA DE PRESENTACIÓN

La capa de presentación da formato a los datos que deberán presentarse en la capa de aplicación. Se puede decir que es el traductor de la red. Esta capa puede traducir datos de un formato utilizado por la capa de la aplicación a un formato común en la estación emisora y, a continuación, traducir el formato común a un formato conocido por la capa de la aplicación en la estación receptora. 

La capa de presentación proporciona: 

  • Conversión de código de caracteres: por ejemplo, de ASCII a EBCDIC.
  • Conversión de datos: orden de bits, CR-CR/LF, punto flotante entre enteros, etc.
  • Compresión de datos: reduce el número de bits que es necesario transmitir en la red.
  • Cifrado de datos: cifra los datos por motivos de seguridad. Por ejemplo, cifrado de contraseñas.

CAPA DE APLICACIÓN



El nivel de aplicación actúa como ventana para los usuarios y los procesos de aplicaciones para tener acceso a servicios de red. Esta capa contiene varias funciones que se utilizan con frecuencia: 

  • Uso compartido de recursos y redirección de dispositivos
  • Acceso a archivos remotos
  • Acceso a la impresora remota
  • Comunicación entre procesos
  • Administración de la red
  • Servicios de directorio
  • Mensajería electrónica (como correo)
  • Terminales virtuales de red

Protocolos de Red

PROTOCOLOS DE REDES


Son un conjunto de reglas y normas que permiten la colección entre computadores que forman parte de una red de forma independiente a las plataformas del sistema operativo como lo demuestra el siguiente diagrama:

Cada sistema operativo posee sus protocoles de red en este caso son lo siguiente:


PROTOCOLO TCP/IP
Protocolo de control de transferencia /protocolo de internet

Protocolo de Internet

Son un conjunto de protocolos que controlan el envio y la recepción de mensajes desde el origen hasta su destino y garantizan la integridad de la información.
PROTOCOLO TCP

Transmission Control Protocol (en español 'Protocolo de Control de Transmisión') o TCP, es uno de los protocolos fundamentales en Internet. Fue creado entre los años 1973 y 1974 por Vint Cerf y Robert Kahn.1
Muchos programas dentro de una red de datos compuesta por computadoras, pueden usar TCP para crear conexiones entre sí a través de las cuales puede enviarse un flujo de datos. El protocolo garantiza que los datos serán entregados en su destino sin errores y en el mismo orden en que se transmitieron. También proporciona un mecanismo para distinguir distintas aplicaciones dentro de una misma máquina, a través del concepto de puerto.
TCP da soporte a muchas de las aplicaciones más populares de Internet (navegadores, intercambio de ficheros, clientes FTP, etc.) y protocolos de aplicación HTTP, SMTP, SSH y FTP.

 
DIAGRAMA DE LOS PROCOLOS TCP


FTP:


El protocolo FTP (Protocolo de transferencia de archivos) es, como su nombre lo indica, un protocolo para transferir archivos.
La implementación del FTP se remonta a 1971 cuando se desarrolló un sistema de transferencia de archivos (descrito en RFC141) entre equipos del Instituto Tecnológico de Massachusetts (MIT, Massachusetts Institute of Technology). Desde entonces, diversos documentos de RFC (petición de comentarios) han mejorado el protocolo básico, pero las innovaciones más importantes se llevaron a cabo en julio de 1973.

HTTP:

Hypertext Transfer Protocol o HTTP (en español protocolo de transferencia de hipertexto) es el protocolo usado en cada transacción de la World Wide Web. HTTP fue desarrollado por el World Wide Web Consortium y la Internet Engineering Task Force, colaboración que culminó en 1999 con la publicación de una serie de RFC, el más importante de ellos es el RFC 2616 que especifica la versión 1.1. HTTP define la sintaxis y la semántica que utilizan los elementos de software de la arquitectura web (clientes, servidores, proxies) para comunicarse. Es un protocolo orientado a transacciones y sigue el esquema petición-respuesta entre un cliente y un servidor. Al cliente que efectúa la petición (un navegador web o un spider) se lo conoce como "user agent" (agente del usuario). A la información transmitida se la llama recurso y se la identifica mediante un localizador uniforme de recursos (URL). Los recursos pueden ser archivos, el resultado de la ejecución de un programa, una consulta a una base de datos, la traducción automática de un documento, etc.
HTTP es un protocolo sin estado, es decir, que no guarda ninguna información sobre conexiones anteriores. El desarrollo de aplicaciones web necesita frecuentemente mantener estado. Para esto se usan las cookies, que es información que un servidor puede almacenar en el sistema cliente. Esto le permite a las aplicaciones web instituir la noción de "sesión", y también permite rastrear usuarios ya que las cookies pueden guardarse en el cliente por tiempo indeterminado.

SMTP:

El Simple Mail Transfer Protocol (SMTP) (Protocolo para la transferencia simple de correo electrónico), es un protocolo de red utilizado para el intercambio de mensajes de correo electrónico entre computadoras u otros dispositivos (PDA, teléfonos móviles, etc.). Fue definido en el RFC 2821 y es un estándar oficial de Internet.1
El funcionamiento de este protocolo se da en línea, de manera que opera en los servicios de correo electrónico. Sin embargo, este protocolo posee algunas limitaciones en cuanto a la recepción de mensajes en el servidor de destino (cola de mensajes recibidos). Como alternativa a esta limitación se asocia normalmente a este protocolo con otros, como el POP o IMAP, otorgando a SMTP la tarea específica de enviar correo, y recibirlos empleando los otros protocolos antes mencionados (POP O IMAP).

Telnet:

Telnet (TELecommunication NETwork) es el nombre de un protocolo de red que nos permite viajar a otra máquina para manejarla remotamente como si estuviéramos sentados delante de ella. También es el nombre del programa informático que implementa el cliente. Para que la conexión funcione, como en todos los servicios de Internet, la máquina a la que se acceda debe tener un programa especial que reciba y gestione las conexiones. El puerto que se utiliza generalmente es el 23.

DHCP:

DHCP (siglas en inglés de Dynamic Host Configuration Protocol, en español «protocolo de configuración dinámica de host») es un protocolo de red que permite a los clientes de una red IP obtener sus parámetros de configuración automáticamente. Se trata de un protocolo de tipo cliente/servidor en el que generalmente un servidor posee una lista de direcciones IP dinámicas y las va asignando a los clientes conforme éstas van quedando libres, sabiendo en todo momento quién ha estado en posesión de esa IP, cuánto tiempo la ha tenido y a quién se la ha asignado después.

DNS:

Domain Name System o DNS (en español «Sistema de Nombres de Dominio») es un sistema de nomenclatura jerárquica para computadoras, servicios o cualquier recurso conectado a Internet o a una red privada. Este sistema asocia información variada con nombres de dominios asignado a cada uno de los participantes. Su función más importante, es traducir (resolver) nombres inteligibles para las personas en identificadores binarios asociados con los equipos conectados a la red, esto con el propósito de poder localizar y direccionar estos equipos mundialmente.

Para un equipo de cómputo forme parte de una red necesita un nombre y un grupo de trabajo: